

PREHENSICC Analyse du cycle Page 1 sur 4

NOM:

Prénom:

Date:

ATELIER

TP N°26

CI,1 Approche fonctionnelle d'un equipement					
BACMEI CP2.1 Analyser le fonctionnement et l'organisation du système		Analyser le fonctionnement et l'organisation du système			
BEP MEI	CP1.5	Analyser son intervention et l'environnement.			

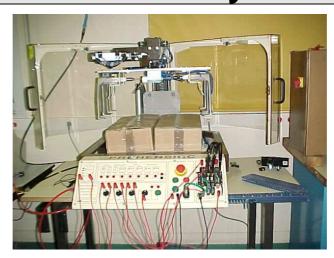
Etude des mouvements en mode manuel du sous système prehensicc

Etude du sous système prehensicc

Lors de cette intervention :

- Utiliser les outils appropriés.
- > Utiliser les équipements de protections individuelles.

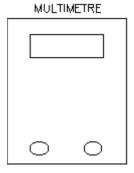
Protection obligatoire des pieds

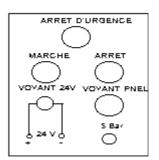


Protection obligatoire du corps

Machine sous énergie

PREHENSICC « Analyse du sycle »

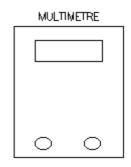

PREHENSICC Analyse du cycle

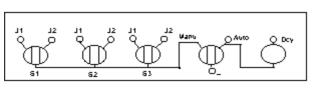

NOM:
Prénom :
Date :

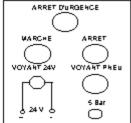
Page 2 sur 4

1) Vérification de la présence de tension sur le module d'énergie.

Vérifier ♣, en position marche, la presence du 24v = sur le module d'énergie. Reporter vul sur le schéma ci-dessous, les liaisons entre le module d'énergie et le multimètre. Dans le cadre du multimètre, noter la fonction de l'appareil utilisé, le calibre et la valeur lue.




2) Vérification de la présence de tension sur le module pupitre.


Vérifier ← et noter \ la présence du 24V= sur les douilles suivantes, lorsque la commande correspondante est effectuée :

AUTO	DCY	S1_j1	S2_j1	S3_j1	S1_j2	S2_j2	S3_j2

Sur le dessin ci dessous, câbler **☆** le multimètre pour la vérification de s2_j1 et noter **⋄** dans le cadre le calibre et la valeur lue.

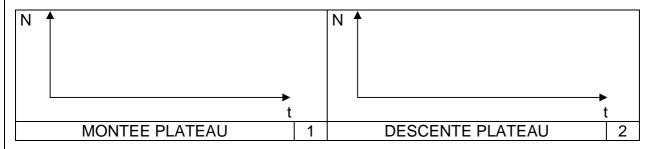
PREHENSICC Analyse du cycle

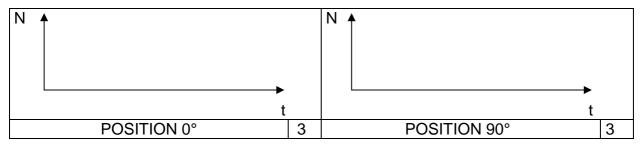
NOM:
Prénom :
Date :

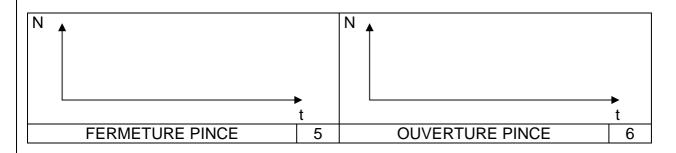
Page 3 sur 4

3) Etude d'un cycle de fonctionnement

Raccorder 🛠 les douilles aux modules des électrovannes et plateau :


S1_j1	S1_j2	S2_j1	S2_j2	S3_j1	S3_j2
KM2	KM1	Ev1A	EV1B	EV2A	EV2B
(montée)	(descente)	(pince à 0°)	(pince à 90°)	(Pince ou-	(pince fer-
(montee)	(uescenie)	(pince a 0)	(pince a 30)	verte)	mée)

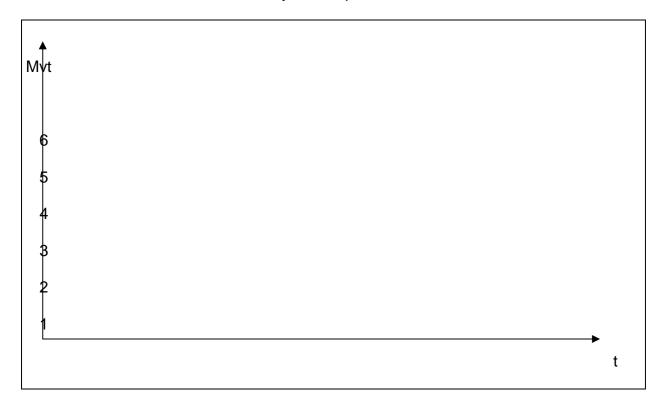

Placer le commutateur AUTO/MANU sur MANU.


Verifier qu'en agissant sur :

POSITION	FONCTION	TEST OK
S1_j1	Le plateau monte	
S1_j2	Le plateau descend	
S2_j1	La pince s'oriente en position 0°	
S2_j2	La pince s'oriente en position 90°	
S3_j1 S3_j2	La pince s'ouvre	
S3_j2	La pince se ferme	•

Sur les diagrammes ci-dessous, reporter dans la zone pre-definie les temps de réalisation de chacun de ces mouvements (échelle : 10mm=1S).

PREHENSICC Analyse du cycle


NOM:
Prénom :
Date :

Page 4 sur 4 Date :

Si l'on considère qu'un cycle complet correspond à l'enchaînement des mouvements suivants :

Ouverture pince- monté plateau- fermeture pince- descente plateau- rotation pince 90° monté plateau- ouverture pince-descente plateau- rotation pince 0°.

Donner le temps total d'un cycle :

